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It is obvious that between any two rows (columns) of an m-by-n totally non-
negative matrix a new row (column) may be inserted to form an (m+1)-by-n
(m-by-(n+1)) totally nonnegative matrix. The analogous question, in which ``totally
nonnegative'' is replaced by ``totally positive'' arises, for example, in completion
problems and in extension of collocation matrices, and its answer is not obvious.
Here, the totally positive case is answered affirmatively, and in the process an
analysis of totally positive linear systems, that may be of independent interest, is
used. � 2000 Academic Press

I. INTRODUCTION

An m-by-n matrix A is called totally positive (nonnegative) if every minor
of A is positive (nonnegative). See [A, GK, GM, K] for background and
ample motivation. The following interpolation question often arises in
totally positive (nonnegative) completion problems, and it seems not to
have been addressed in the literature on the subject nor is its answer
known to others working in the field. Under what circumstances may an
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additional row (column) be inserted into an m-by-n totally positive (non-
negative) matrix A, say between row (column) i and i+1 ( j and j+1),
i=0, ..., m ( j=0, ..., n), so that the resulting (m+1)-by-n (m-by-(n+1))
matrix is totally positive (nonnegative)? To combine the two cases, call a
row or column a line, and refer to this as the problem of line insertion.

The following observations about line insertions may be easily made.

(i) In either the totally positive (TP) or totally nonnegative (TN)
case, the set of possible insertions (in a specific place) is convex, because
of linearity of the determinant as a function of a line.

(ii) In the TN case, the set of possible insertions is always nonempty
(i.e., line insertion is always possible in every position in every TN matrix)
because either repetition of an adjacent line or use of the zero line suffices.
However, none of these insertions is possible in the general TP case, and
the existence of a solution to the line insertion problem in the TP case,
though plausible, is not obvious.

(iii) When the line is exterior (top�bottom, right�left), it is obvious
that there is a solution in the TP case by adding sufficiently large entries
one-at-a-time in the correct order. For example, to add a new last column,
start from the top and move down the column; each successive entry enters
only positively into every minor it completes, so that a sufficiently large
value suffices each time.

We show here that the life insertion problem always has a solution in the
TP case and the mechanism may be of independent interest (as we have
found it to be in other contexts). We give a careful analysis to ``totally
positive linear systems.'' Throughout we let det A denote the determinant
of A.

II. MAIN RESULTS

The following lemma is fundamental to the insertion strategy and may
be of independent interest. It is closely related to [K, Theorem 2.1(b),
p. 228] (which originates in [GK]), but our lemma has a more precise
conclusion under a stronger hypothesis.

Lemma 2.1. If A=[a1 , a2 , ..., an] is an (n&1)-by-n TP matrix, then,
for k=1, 2, ..., n,

ak= :
n

i=1, i{k

y iai (1)

in which sgn( yi) equals sgn(&1) i if k is odd and sgn(&1)i&1 if k is even.
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Proof. If k=1, (1) has solution

y=[a2 , a3 , ..., an]&1 a1

=
1

det[a2 , a3 , ..., an] _
det[a1 , a3 , a4 , ..., an]
det[a2 , a1 , a4 , ..., an]

b
det[a2 , a3 , ..., an&1 , a1]

&
and sgn( yi)=sgn(&1) i. If k>1, then (1) has solution

y=[a1 , a2 , ..., ak&1 , ak+1 , ..., an]&1 ak

=
1

det[a1 , a2 , ..., ak&1 , ak+1 , ..., an]

__
det[ak , a2 , a3 , ..., ak&1 , ak+1 , ..., an]
det[a1 , ak , a3 , ..., ak&1 , ak+1 , ..., an]

b
det[a1 , a2 , a3 , ..., ak&1 , ak+1 , ..., an&1 , ak]

&
and we see that if k is odd, sgn( yi)=sgn(&1)i while if k is even,
sgn( yi)=sgn(&1) i&1. K

In other words, when expressing any column ak of an (n&1)-by-n TP
matrix A as a linear combination of the remaining columns, say ak=
�n

i=1, i{k yiai , all coefficients yi are nonzero and, for i=1, ..., k&1 and
i=k+1, ..., n, the signs of the coefficients alternate with yk&1 and yk+1

being positive. In terms of column insertion, this means the following: if we
insert a column x into a square TP matrix A and remain TP, then, when
x is expressed as a linear combination of the columns of A, the coefficients
of the columns of A are ``appropriately signed'' in the following sense: the
signs of the coefficients of the columns on each side of x alternate with the
signs of the coefficients of the columns adjacent to x being positive. It is
easy to construct examples to show that just inserting a positive column
that is an appropriately signed linear combination of the columns of a
square TP matrix A does not necessarily result in a TP matrix.

Example 2.2. Consider the TP matrix

1 1 2

A=[a1 , a2 , a3]=_1 2 5& .

1 3 9
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If we insert the column x=a1+a2& 1
3a3 between the first and second

columns of A, we obtain

1 4
3 1 2

B=[a1 , x, a2 , a3]=_1 4
3 2 5& .

1 1 3 9

Since, for instance, the 2-by-2 minor in the lower left corner is negative, B
is not TP.

Thus, the lemma is seen to be a necessary condition for inserting a row
(column) in a TP matrix, but not a sufficient condition. In addition, care
must be taken in choosing the relative magnitudes of the coefficients yi so
that a new TP matrix is created. The proof of our main result shows how
to select these relative magnitudes so that we obtain a new TP matrix upon
the insertion of the resulting column. Implicit in the proof is the use of
Fekete's criterion [F] stated as follows: a matrix is totally positive if and
only if the determinant of every square submatrix based on contiguous
(e.g., i, i+1, ..., i+k) row and column index sets is positive.

Theorem 2.3. Let A be a TP matrix. Then, a line can be inserted
between any pair of adjacent lines in A so that the resulting matrix is TP.

Proof. Let A be a TP matrix. By transposition and�or external addition
of rows�columns (see (iii) above), we may assume, without loss of
generality, that A is square and of even order, say A is n-by-n in which
n=2k, and that we wish to insert a column in the middle. Specifically,
let A=[a1 , a2 , ..., ak , ak+1 , ..., an] in which n=2k and let A� =
[a1 , a2 , ..., ak , x, ak+1 , ..., an] in which

x= :
k

i=1

(&1) i+1 yiak&i+1+ :
k

i=1

(&1) i+1 yiak+i , (2)

for some choice of y1 , ..., yk>0. Thus, the coefficients of x are
appropriately signed and it remains to show that y1 , ..., yk>0 can be
chosen so that A� is TP.

For each square contiguous submatrix A� of A� containing a subcolumn
x̂ of x, let âi denote the subcolumn of ai having the same row indices as
x̂ (i=1, ..., n), let l(A� ) (respectively, r(A� )) denote the number of columns of
A� which lie to the left (respectively, right) of x̂, and let m=m(A� )=
min[l(A� ), r(A� )]. Thus,

A� =[âk&l(A� )+1 , ..., âk , x̂, âk+1 , ..., âk+r(A� )] (3)
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in which

x̂= :
k

i=1

(&1) i+1 yi âk&i+1+ :
k

i=1

(&1) i+1 yi âk+i . (4)

First, select yk>0. We now show that yk>0 ensures that all square con-
tiguous submatrices A� of A� containing a subcolumn x̂ of x and satisfying
m(A� )=k&1 have positive determinant or equivalently, that all square
contiguous submatrices A� of A� containing a subcolumn x̂ of x and satisfy-
ing m(A� )�k&1 have positive determinant. (The latter statement follows
since no square contiguous submatrix A� of A� contains a subcolumn x̂ of x
and satisfies m(A� )=k.) We need to consider the following cases since
m(A� )=k&1 implies that the order of A� must be either n (Cases I or II)
or n&1 (Case III).

Case I.

det A� =det[a1 , ..., ak , x, ak+1 , ..., an&1]

=det[a1 , ..., ak , (&1)k+1 yka2k , ak+1 , ..., a2k&1]

=det[a1 , ..., ak , ak+1 , ..., a2k&1 , (&1) (k+1)+(k&1) yka2k]

=yk det[a1 , ..., ak , ak+1 , ..., a2k]

=yk det A>0.

Case II. det A� =det[a2 , ..., ak , x, ak+1 , ..., an] is similar.

Case III.

det A� =det[â2 , ..., âk , x̂, âk+1 , ..., ân&1]

=det[â2 , ..., âk , (&1)k+1 yk â1+(&1)k+1 yk ân , âk+1 , ..., ân&1]

=det[(&1) (k+1)+(k&1) yk â1 , â2 , ..., âk , âk+1 , ..., ân&1]

+det[â2 , ..., âk , âk+1 , ..., ân&1 , (&1) (k+1)+(k&1) yk ân]

=yk[det[â1 , ..., ân&1]+det[â2 , ..., ân]]

>0.

We will now show that yk&1 , ..., y1>0 can be sequentially chosen so
that A� is TP. We will need the following observation.

Observation. Let A� be given by (3) in which m(A� )� j&1 and x̂ is given
by (4). Then the terms of (4) involving any of y1 , ..., yj&1 can be ignored
when computing det A� . (The terms of (4) involving any of y1 , ..., yj&1
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correspond to the columns âk& j+2 , ..., âk , âk+1 , ..., âk+ j&1 . Since l(A� ),
r(A� )� j&1, all of these are columns of A� distinct from x̂ and therefore can
be ignored when computing det A� .)

For j=k, k&1, ..., 2, assume (inductively) that yk , yk&1 , ..., yj have been
chosen so that all square contiguous submatrices A� of A� containing a sub-
column x̂ of x and satisfying m(A� )� j&1 have positive determinant. Then
we just need to show that there is yj&1>0 such that all square contiguous
submatrices A� of A� containing a subcolumn x̂ of x and satisfying
m(A� )= j&2 have positive determinant. (By the Observation, we will then
have chosen yk , yk&1 , ..., y j , yj&1>0 such that all square contiguous sub-
matrices A� of A� containing a subcolumn x̂ of x and satisfying m(A� )� j&2
have positive determinant.)

To simplify subscripting, let m= j&2 so that yk , ..., ym+2>0 have been
chosen such that all square contiguous submatrices A� of A� containing a
subcolumn x̂ of x and satisfying m(A� )�m+1 have positive determinant
and ym+1>0 needs to be chosen so that all square contiguous submatrices
A� of A� containing a subcolumn x̂ of x and satisfying m(A� )=m have
positive determinant. We consider the various possibilities for m=m(A� )
where A� is given by (3) and x̂ is given by (4). In each case (4) has a split-
ting x̂=s+t+u in which s is the sum of the terms in (4) each of whose
vector part is a column of A� distinct from x̂ (and hence s can be ignored
in computing det A� ), t is the sum of the terms of x̂&s that involve ym+1 ,
and u=x̂&s&t. Thus, the terms that sum to u involve the coefficients
yk , ..., ym+2 only.

Case I. m=r(A� )<l(A� ). Then x̂=s+t+u in which

s= :
l(A� )

i=1

(&1) i+1 yi âk&i+1+ :
m

i=1

(&1) i+1 y i âk+i ,

t=(&1)m+2 ym+1 âk+m+1 ,

and

u= :
k

i=1+l(A� )

(&1) i+1 y i âk&i+1+ :
k

i=m+2

(&1) i+1 y i âk+i .

Thus,

det A� =det[âk&l(A� )+1 , ..., âk , t+u, âk+1 , ..., âk+m]

=det[âk&l(A� )+1 , ..., âk , âk+1 , ..., âk+m , (&1)2m+2 ym+1 âk+m+1]

&det[âk&l(A� )+1 , ..., âk , &u, âk+1 , ..., âk+m]

>0,
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or equivalently,

ym+1>b(A� )=
det[âk&l(A� )+1 , ..., âk , &u, âk+1 , ..., âk+m]

det[âk&l(A� )+1 , ..., âk , âk+1 , ..., âk+m , âk+m+1]
. (i)

Case II. m=r(A� )=l(A� ). Then x̂=s+t+u in which

s= :
m

i=1

(&1) i+1 yi âk&i+1+ :
m

i=1

(&1) i+1 y i âk+i ,

t=(&1)m+2 ym+1 âk&m+(&1)m+2 ym+1 âk+m+1 ,

and

u= :
k

i=m+2

(&1) i+1 yi âk&i+1+ :
k

i=m+2

(&1) i+1 yi âk+i .

Thus,

det A� =det[âk&m+1 , ..., âk , t+u, âk+1 , ..., âk+m]

=det[(&1)2m+2 ym+1 âk&m , âk&m+1 , ..., âk , âk+1 , ..., âk+m]

+det[âk&m+1 , ..., âk , âk+1 , ..., âk+m , (&1)2m+2 ym+1 âk+m+1]

&det[âk&m+1 , ..., âk , &u, âk+1 , ..., âk+m]

>0,

or equivalently,

ym+1>b(A� )

=
det[âk&m+1 , ..., âk , &u, âk+1 , ..., âk+m]

det[âk&m , ..., âk+m]+det[âk&m+1 , ..., âk+m+1]
. (ii)

Case III. m=l(A� )<r(A� ). Analogously to Case I, one has that

ym+1>b(A� )=
det[âk&m+1 , ..., âk , &u, âk+1 , ..., âk+r(A� )]

det[âk&m , ..., âk , âk+1 , ..., âk+r(A� )]
. (iii)

Notice that in each of the Cases I, II, and III, ym+1>0 can be deter-
mined from yk , ..., ym+2 so that det A� >0. Since there are a finite number
of square contiguous submatrices A� of A� containing a subcolumn x̂ of x
and satisfying m(A� )=m, we can choose ym+1>0 large enough so that for
all square contiguous submatrices A� of A� containing a subcolumn x̂ of x
and satisfying m(A� )=m, det A� >0. This completes the proof. K
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The proof of the theorem yields the following algorithm for row�column
insertion of TP matrices.

(Column) Insertion Algorithm. Suppose that A is a p-by-q TP
matrix and we wish to insert a column between the jth and ( j+1)st
column of A so that the resulting matrix is TP.

Step 1. Convert A to a square TP matrix B of even order n=2k and
with the jth and ( j+1)st columns of A lying in the middle of B (by exter-
nal addition of rows�columns).

Step 2. Set y1 , ..., yk=1 and i=0.

Step 3. Convert B to A� =[a1 , a2 , ..., ak , x, ak+1 , ..., an] by inserting
the column x defined by (2) in the middle of B.

Step 4. i=i+1.

Step 5. glb(k&i)=max[b(A� ) : A� is a square contiguous submatrix
of A� having k+1 as a column index and satisfying m(A� )=k&i&1 and
b(A� ) is as defined in the proof of the Theorem].

Step 6. yk&i=max[1, glb(k&i)+0.0001].

Step 7. If i{k&1, return to Step 4.

Step 8. Set x=�k
i=1 (&1) i+1 yi ak&i+1+�k

i=1 (&1) i+1 yiak+i .

Step 9. Delete each row�column of A� that corresponds to a row�
column added externally to A. The resulting matrix is the desired TP
matrix.

Closing Remark. Note that to do a row insertion instead, we simply
perform the algorithm on the transpose of our original matrix.
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